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Abstract: Integrating modelling of water pollution and GIS enables the connection of environmental process 
models with geospatial data describing the physical environment. Time series of water pollution data at 
monitoring profiles are used to complement the spatial database and to interpret the results of data analysis. 
In this case, the multivariate statistical methods provide an exploratory environment for data analysis and an 
indication of seasonal changes in the framework of surface water pollution. In addition to a wide range of 
useful multivariate methods, principal component analysis (PCA) and factor analysis (FA) are used to 
differentiate seasonal water pollution at monitoring profiles. Integrating modelling of water pollution is 
demonstrated for a river basin in the urban area of Prague. Data series from long-term measurements (25 
years; seasonal measurements for PCA and FA in the period 2001-2004) are used to study the variability of 
water quality parameters. Consecutively, the PCA and FA are carried out to identify seasonal deviations 
originating from the time series of water temperature, pH, conductivity, suspended solids, nitrates, 
phosphates, BOD, COD, etc. The graphs focused on PCAs’ loadings and FAs’ biplots show the standard 
data outputs. The data from the multivariate seasonal exploratory analysis are transported into GIS to map 
the changes of FAs’ loadings. The maps of changes are then used to estimate the observed seasonal strengths 
of the given processes that include simultaneous changes in water pollution parameters. As an example, the 
seasonal strength of NO3 is mapped and compared together with other strengths of remaining parameters. 
The significant changes of FAs’ loadings are observed between the winter seasons and the summer seasons 
(2001-2004), which is in correspondence with the original data. The described exploratory tools are 
developed to support decision-making processes in the framework of water pollution management. 
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1. INTRODUCTION 

The exploration of water pollution in urban areas 
represents a special case of research focused on 
water pollution. Due to the very high level of 
human interference with natural processes, all 
environmental phenomena must be considered in 
much smaller temporal and spatial scales than in 
rural areas. The essential differences with respect 
to methodology and data management mean that 
data collected by national meteorological services 
are seldom adequate for urban studies. Extended 
data collection has to be provided to deliver data 
on small spatial scales and short time resolutions. 
Locally collected data require long time periods 
before the amount of data is sufficient for 
meaningful exploratory applications. Physical 

properties and chemical composition of surface 
water systems in urban areas include many 
different types of soils that are heterogeneous and 
heavily disturbed. In addition to this heterogeneity, 
growing cities are constantly complemented with 
new elements. That is why the physical and 
chemical changes become more complex. A wide 
range of water pollution models and 
environmental analyses has been developed in the 
past decades. Some water pollution models have 
become a part of Geographical Information 
Systems (GIS). This integration brings the 
possibility to use water pollution analysis more 
efficiently [Maidment, 2002]. The data analysis of 
water pollution together with GIS is used in some 
developed countries on a municipal level for 
support of decision making systems, which can be 



 

applied in real time. Thus, modelling of water 
pollution in urban areas is becoming an 
increasingly important tool for the assessment of 
environmental impacts. Urban water pollution will 
have an increasing influence on the sustainability 
of human societies. Growing urban populations 
and urban areas bring significant changes in 
physical properties of the land surface. Reinforced 
urban surfaces and channelling of natural streams 
result in fast runoff with high peak flows, which 
causes disastrous water pollution effects on the 
whole river basin downstream of the city. Thus, 
meaningful water pollution management cannot 
exist without monitoring networks extended by 
other surface data, calculation methods and 
exploratory techniques [Matejicek, 2002]. 
 

2. URBAN WATER POLLUTION DATA 

Modelling of water pollution with GIS takes into 
account the huge amount of measurements and 
spatial characteristics. The measurements mostly 
represent time series of climatologic and 
hydrologic conditions, physical and chemical 
parameters of the river basins, estimates of water 
pollution from point and non-point sources, and 
potential ecological accidents. In the case of GIS, 
the spatial characteristics are derived from digital 
map layers (topographic maps, thematic maps 
focused on hydrological, soil and geochemical 
phenomena). In addition to the standard two-
dimensional map layers, other spatial data can be 
incorporated into digital terrain models optionally 
extended by vegetation and buildings, and aerial 
images or satellite scenes. 

In the case of this paper, water pollution 
measurements are based on samples taken 
regularly from the surface water network of the 
urban area of Prague. The investigated parameters 
(water temperature, water flow, conductivity, 
suspended solids, pH, oxygen saturation index, 
biological oxygen demand, chemical oxygen 
demand, nitrate, ammonia, phosphate, chloride, 
sulphate, calcium, magnesium, and coliform 
bacteria) have been measured for nearly 25 years. 
Due to successive changes in methodology, the 
various time interval settings during the period, 
and incompleteness of some data especially from 
the first years, only four years (2001-2004) of 
observations were selected for the present study. 
The location of the sampled water profiles are 
illustrated in schematic view in Figure 1. The data 
originated from 16 observation points, which are 
located on 4 major subsidiary water streams. The 
selected water streams with their observation 
points represent just a part of the whole 

monitoring network. These selections were made 
to identify the dominant water pollution. 

 
Figure 1. Monitoring network in the river basins. 

 

3. METHODS FOR DATA PROCESSING 

In the case of this paper, the multivariate statistical 
methods are focused on classification of the data 
collection taken from samples located on the 
surface water network in Prague. Principal 
component Analysis (PCA) and factor analysis 
(FA) are used to reduce the number of variables 
and to identify structure in the relationships among 
variables. The input data are standardised using 
the average and the standard deviation to remove 
different physical dimensions. By scaling all 
measured values with the standardisation, the non-
dimensional total variance is defined as the sum of 
variances arising from the original variables. After 
processing data by PCA, a smaller number of the 
uncorrelated variables (principal components), 
which cover the majority of the variability, are 
found. In the framework of geometrical 
interpretation, the principal components are 
represented by orthogonal vectors, where the first 
major principal components course in the direction 
of the dominant data variability. In the case of FA, 
the orthogonal system can be rotated to find a 
more realistic interpretation of the principal axis. 

These introduced techniques are just a part of 
multivariate statistical methods. The application of 



 

PCA as a tool for water quality evaluation and 
management is described by Parinet [2004]. A 
case study focused on process identification by 
PCA in the framework of river water-quality data 
is represented in a paper written by Petersen 
[2001] and consecutively by Callies [2005]. For 
the river basins in the urban regions, some part of 
the variability can be explained by considering the 
external meteorological forcing, which is mainly 
related to the variations of water temperature and 
runoff. The organic compounds are highly related 
to biological activities, which are also dependent 
on seasonal cycles. Thus, two leading patterns of 
relations can be obtained, one discharge-dependent 
and the other caused by biological activities. But 
the processes in the urban environment are much 
more complex than in rural areas, which can be 
explored, in addition to multivariate statistics, by 
dynamic models [Matejicek, 2003]. Due to the 
heterogeneity of urban areas, the standard erosion 
models can be applied only partially, which means 
that the classification of river basin areas is used 
for just an approximate relationship together with 
the measured data. Thus, the multivariate 
statistical techniques are used to explore basic 
relationships that can be finally studied by 
dynamic models. 

 

4. USING MULTIVARIATE STATISTICS 

An overview of the input data for multivariate 
exploratory methods is illustrated in Figure 2. 
After the data standardisation, PCA and FA 
(“varimax rotation”) are carried out separately for 
six seasons (January, March, May, July, 
September and November). The selection is 
subordinated to the available data and to the 
expected differences in biological activities, which 
appears to be the dominant source of qualitative 
changes. The results in Figure 3 represent PCAs’ 
loadings and FAs’ bi-plot diagrams. In all cases of 
the FAs’ bi-plots, more than 50% of the variability 
is covered by two factors. To compare differences 
in factor loadings in each season (January, March, 
May, July, September, November), the factor 
loadings are shown together with coordinate 
control points ([0; 1], [1; 0], [-1; 0], [0; -1]) in the 
attached map schemas, Figure 4. To illustrate the 
changes of the factor loadings in a more 
transparent way, the points ranking to each 
specific parameter (water temperature, water flow, 
conductivity, suspended solids, pH, oxygen 
saturation index, biological oxygen demand, 
chemical oxygen demand, nitrate, ammonia, 
phosphate, chloride, sulphate, calcium, 
magnesium, and coliform bacteria) are 
interconnected by lines in the framework of the 

GIS project. As an example, the seasonal strength 
of NO3 is mapped and compared together with 
other strengths of remaining parameters. The 
significant changes of FAs’ loadings are observed 
between the winter seasons and the summer 
seasons (2001-2004), which is also in 
correspondence with the original data. 

 

5. CONCLUSIONS 

In spite of the fact that all data are managed by 
GIS (ArcGIS 9.x), multivariate statistical methods 
(PCA and FA) are carried out by a standalone 
statistical program (SPlus 6.1). But the idea is to 
present a compact software application for the 
decision-making processes in the framework of 
water pollution management. Thus, the proposed 
tools are intended to be integrated into various 
case tools as a standalone application. In the case 
of the presented paper, the long-term observations 
used are used for testing of developed tools, which 
nowadays assist in the interpretation of observed 
processes. 

 

6. ACKNOWLEDGEMENTS 

The authors wish to thank the authorities of the 
capital Prague and the Institute of Municipal 
Informatics of Prague for providing the data of the 
river basin and map layers of the urban areas. 

7. REFERENCES 

Callies, U., Interaction structures analyzed from 
water-quality data, Ecological Modelling, 
187, 475-490, 2005. 

Maidment, D.R., ArcHydro: GIS for water 
resources, ESRI, 220 pp., Redlands, 2002. 

Matejicek, L., Environmental Modelling in Urban 
Areas with GIS, paper presented at the 1st 
Biennial Meeting of iEMSs, Lugano, 
Switzerland, June 24-27, 60-65, 2002. 

Matejicek, L., L. Benesova and J. Tonika, 
Ecological modelling of nitrate pollution in 
small river basins by spreadsheets and GIS, 
Ecological Modelling, 170, 245-263, 2003. 

Parinet, B., A. Lhote and B. Legube, Principal 
component analysis: an appropriate tool for 
water quality evaluation and management-
application to a tropical lake system, 
Ecological Modelling, 178, 295-311, 2004. 

Petersen, W., L. Bertino, U. Callies and E. Zorita, 
Process identification by principal 
component analysis of river-quality data, 
Ecological Modelling, 138, 193-213, 2001. 

 



 

water temperature (wt) [°C]

0

20

40

60

80

B
O

01

B
O

11

B
O

12

K
U

00

K
U

02

K
U

11

K
U

12

R
O

01

R
O

11

R
O

12

R
O

14

SP
01

SP
03

SP
04

SP
07

SP
11

NOV
SEP
JUL
MAY
MAR
JAN

 
conductivity (cond) [mS/m ]
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suspended solids (susp/cmp) [mg/l]
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oxigen saturation index (O2s) [%]
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BOD [mg/l]
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nitrate (NO3) [mg/l]
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sulphate (SO4) [mg/l]
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Figure 2. The pre-processed measured data. 



 

JANUARY C1 C2 C3 C4 C5 C6
Proportion of variance 0.39 0.22 0.11 0.08 0.06 0.05
Cummulative proportion 0.39 0.62 0.73 0.81 0.87 0.92
MARCH C1 C2 C3 C4 C5 C6
Proportion of variance 0.46 0.17 0.14 0.09 0.05 0.03
Cummulative proportion 0.46 0.63 0.77 0.86 0.91 0.95
MAY C1 C2 C3 C4 C5 C6
Proportion of variance 0.34 0.22 0.13 0.11 0.07 0.05
Cummulative proportion 0.34 0.56 0.69 0.80 0.86 0.91  

JULY C1 C2 C3 C4 C5 C6
Proportion of variance 0.42 0.17 0.11 0.09 0.08 0.04
Cummulative proportion 0.42 0.60 0.71 0.80 0.88 0.92
SEPTEMBER C1 C2 C3 C4 C5 C6
Proportion of variance 0.35 0.20 0.15 0.11 0.06 0.04
Cummulative proportion 0.35 0.55 0.71 0.82 0.88 0.92
NOVEMBER C1 C2 C3 C4 C5 C6
Proportion of variance 0.35 0.20 0.15 0.11 0.06 0.04
Cummulative proportion 0.35 0.55 0.71 0.82 0.88 0.92  
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Figure 3. PCA and FA seasonal outputs.



 

 
Figure 4. Examples of the mapping FA seasonal loading differences with the highlighted NO3 path. 


