
A component to simulate agricultural management

Marcello Donatelli, CRA-ISCI, Bologna, Italy (m.donatelli@isci.it)
Frits K. van Evert, PRI, Wageningen, The Netherlands

Andrea Di Guardo, Informatica Ambientale S.r.l., Milano, Italy
Myriam Adam, INRA, Toulouse, France

Kamal Kansou, INRA, Montpellier, France

Abstract: Quantifying the impact of agricultural management on production and system externalities is the
goal of many agricultural modeling studies. Here we consider only those drivers of farmers’ decision making
that are based on the state of the agricultural system. Agricultural management must be simulated in such a
way to mimic as closely as possible farmers’ behaviour. Limiting the drivers of the decision making process
to the biophysical system implies that each action must be triggered at run time via a set of rules which can
be based on the state of the system, on constraints of resources availability, and on the physical
characteristics of the system. Furthermore, the implementation of the management simulation must account
for a broad range of actions within each of the typologies of management. Simulation of complex systems is
increasingly being implemented using a modular, component based approach. Implementing the simulation
of management in a component based system poses challenges in defining a framework which must be
reusable and able to account for a variety of agricultural management technologies applied to different
enterprises. Furthermore, the implementation of management must allow using different approaches to model
its impact on different model components. This paper presents a conceptual framework and a reusable
software component to implement agricultural management in simulation systems. The framework is based
on “rules” and “impacts”, and it is extensible for both. A generic proof of concept is presented, and an
application in a ModCom project is also described.

Keywords: Agricultural management, component-oriented programming, modelling, expert knowledge

1. INTRODUCTION

Many models developed to simulate agricultural
production activities target the analysis/evaluation
of agricultural management impacts on production
and system externalities (Brisson et al., 2003;
Keating et al., 2003; Jones et al., 2003; Stockle et
al., 2003). All these models use a proprietary
ontology to define management events and they
embed in their systems part of the information
needed to model the relevant impact. Moreover,
the implementation of the management handling is
hard-coded; changes in the models (for instance to
account for a new management type) requires
coding it in the modelling systems.
To evaluate alternate management options
accounting for weather variability, typically a
multiple year sample of weather is used; hence, the
unattended implementation of management events
in a simulation must account for system variables
values at run time. Limiting the drivers of the
decision making process to the biophysical system
implies that each action must be triggered via a set
of rules which are based on the state of the system,
constraints of resources availability, and physical
characteristics of the system. Furthermore, the
implementation of the management simulation
must account for a broad range of actions within
each of the typologies of management (e.g. tillage
operations within tillage).
In the last decade there has been an increasing
demand for modularity and interchangeability in
biophysical model development (e.g. Jones et al.,
2001; David et al., 2002), aiming at improving the

efficiency of use of resources, at fostering higher
quality of modelling units via specialization, and at
allowing comparison of alternate approaches to
process simulation. The concept of developing
modular systems for biophysical simulation has
lead to the development of several modelling
frameworks (e.g. Simile, ModCom, IMA, TIME,
OpenMI, SME, OMS, as listed in Argent and
Rizzoli, 2004,), which allow the construction of
whole-system models by linking independent
component models.
Implementing the simulation of management in a
component based system requires: 1) a
formalization which allows accounting for expert
knowledge to configure production technologies,
and 2) a framework capable of accounting for a
variety of agro-technologies applied to different
agricultural activities. Such a component must
allow the implementation of management using
different approaches to model its impact via
different model components, and it should be
extensible to account for new model requirements.
This paper presents an approach and a software
component to implement management in a
component based simulation system.

2. THE RULE-IMPACT APPROACH

An agricultural production activity comprises one
or more production enterprises (e.g. crops in a
rotation, an orchard). Each production enterprise is
managed using a production technique, which is a
set of planned actions. An action will be executed
whenever all of a set of conditions (a "rule") are

met; whenever that happens, a management event
is fired. The management event is quantified via a
set of parameters (an “impact” – not to be
confused with rule parameters) to model the effect
of its implementation in the system via a model.

Fig. 1 Example configuration of management for a two
years rotation: each crop has a set of rules to be tested
each year of the simulation when the crop is planted (i.e.
the sequence of crops is repeated over time)

This framework allows scheduling automatic
management for any agricultural production.
When new expert knowledge becomes available
to trigger events, it can be formalized as a new
“rule”.
If new modelling knowledge can be implemented
in a model component, the needed parameters can
be made available via a new “impact”.

2.1 Rules

Rules are a formal way to model farmers’
behaviour. A rule based model is characterized by
3 main sections:

• Inputs: state of the system, and time (e.g.
soil plant available water, and
currentDay)

• Parameters (e.g. soil plant available water
threshold to trigger irrigation)

• Model which returns a true/false output
Rule parameter values are tested against time
and/or the state of the system. The state of the
system is known via the dynamic variables made
available by the component models of the modeled
system.
It may be desirable to model certain types of
management even if the relevant impact on
production is not simulated (e.g. weeds, pests,
diseases impact on production), so as to allow
quantification of the use of inputs such as
pesticides and possibly to allow modeling the fate
of applied pesticides. Finally, given that almost all
rule-and-impacts are specific for time in the
rotation, all rules require as input “rotationYear”,
which in the example of Fig. 1 is 1 for crop1, and
2 for crop2. Table 1 shows a sample of the rules
currently implemented.

Table. 1 Sample of the rules available in the component AgroManagement

Rule Rule inputs Rule parameters Description
DateWindow currentDay,

rotationYear
beginDay, endDay,
dayInterval

Triggers events within the dates
whenever cumulated days =
dayInterval (reset after event)

DateEventGDD currentDay,
rotationYear,
phenologicalDate*,
airTemperature
Average

accumulatedGDD,
baseTemperature

Triggers an event when a given
number of accumulated GDDs
computed using baseTemperature is
reached since a phonological event
occurred

TemperatureSum rotationYear,
airTemperature
Average

consecutiveDays,
temperatureThreshold

Triggers an event whenever a number
of consecutive days has an average air
temperature above a given threshold

IrrigationPAW currentDay,
rotationYear,
soilLayers*

beginDay, endDay,
plantAvailableWater
Threshold,
referenceDepth,
maxNumberOfEvents

Triggers an event whenever the
average value of plant available water
over a soil depth is below the
threshold, within the dates, for a
maximum number of events

HarvestGrapes currentDay,
berriesSugarContent

beginDay, endDay,
sugarContent

Triggers an event after beginDay, and
when the sugar content of berries is
above a sugar content threshold; if
level is not reached before endDay
triggers the event at endDay

ClippingGrasses currentDay,
aboveground
Biomass,
leafAreaIndex

beginDay, endDay,
biomassThreshold,
leafAreaIndex Trheshold

Triggers events within dates whenever
either the biomass (or the leaf area
index, different approach) threshold
are reached

* complex type (e.g. soilLayers is an array of items soilLayer, which has attributes soilWaterContentVolumetric,
SoilWaterContentAtFC, soilWaterContentAtPWP, layerThickness)

2.2 Impacts

Impacts stands for: "sets of parameters to
implement the impact of a management event in a
model component". Such sets are different
changing management event, and can be different
within management event if the modelling
approach to implement the impact is based on
alternate approaches. Impact can contain actual
values of parameters, and/or they can contain an
alphanumeric field/enumerator which can
simplify the building of the agro-management
configuration file. Such enumerators are then
interpreted by model components which then can
associate to the enumerator all values
corresponding to the specific enumerator. As an
example of the former, an impact for tillage may
include two parameters:

• tillageDepth
• soilMixingCoefficent

An example of using an alphanumeric field /
enumerators again for tillage can be:

• tillageDepth
• implementType

Where the implementType is an enumerator from
a list such as:

PLOW_MOLDBOARD_0_2_M,
MULCH_TREADER,
………

The items above are extracted from the list of
implements of the model Wepp (Alberts et al.,
1995). In the relevant database, a list of 8
parameters is associated to each of the items, and
it allows a model component to implement the
impact according to the Wepp approach. In
particular, tillageDepth is one of the parameters
encapsulated in the enumerator, but providing it
separately makes possible to override the value,
allowing for more flexibility. Using enumerators
requires that model components access a
dedicated data base to retrieve the parameter
values associated to the enumerator value.

3. AGROMANAGEMENT COMPONENT

We have created a generic AgroManagement
component that implements the rule-impact
mechanism described in this paper. The
functionality of rules is defined in the IRules
interface and the functionality of impacts is
defined in the IManagement interface. Thus,
authors of rules and impacts are not limited to
deriving their classes from specific base classes.
The component has two main methods that 1)
load the agro-management configuration, and 2)
check rules at run time and fire events whenever a
rule evaluates to “true”. The modelling
framework in which the AgroManagement
component is registered provides at each time
step time and states. An example of
implementation is described in section 4.

Fig. 2 Activity diagram of the initialization method
(ReadXMLFile)

Fig. 3 Activity diagram of the run-time method
(CheckScheduledEvents).

3.1 The schema and an example XML input

The schema (XSD) of the agro-management
configuration input is shown in Fig. 4; an excerpt
of an XML sample input file is shown below

Fig. 4 Diagram representation of the XML schema of agro-management configuration for a simulation according to the
rule-impact approach: for each planned event, a set of conditions is tested; if conditions are met, the associated set of
management parameters is made available to model components.

3.2 The IRules interface

The IRules interface inherits from IStrategy,
(i.e. an interface from the component
CRA.core.preconditions.dll). The interface is the
same implemented by model classes in a set of
components (e.g. Donatelli et al., 2006), and it
allows discovering rules, their inputs and
parameters via reflection in applications like the
Model Component Explorer - MCE (CRA-ISCI,
2005).
The interface consists of:

public interface IRules
{
bool CheckRule(AStates st, IManagement m);
void TestPreConditions(AStates st,

 IManagement m, string callID);
void LoadXml(XmlNode node);
void SaveXml(ref XmlTextWriter writer);
}

The second method allows for testing pre-
conditions (Meyer, 1997) on the inputs and

parameters of the rule; the test is done via the
component CRA.core.preconditions.dll.
The preconditions component allows for different
types of outputs and it allows for adding custom
developed output drivers. The LoadXML method
is used when the agro-management configuration
is loaded as initialization at run-time.Finally, the
SaveXML method allows writing the rule relevant
information on an XML structured as in Fig. 4.
The abstract type AStates contains the attributes
which get run-time values from the simulation
system. It contains all the information needed by
the rules currently implemented, but it can be
extended as discussed in section 3.4

3.3 The IManagement interfaces

IManagement is the parent interface of a set of
specialized to management type interfaces, as in
the class diagram of Fig. 5.

Fig. 5 Class diagram of the impact types and interfaces (not all classes shown). The diagram shows two alternate impact
classes for irrigation and tillage.

3.3 Extensibility of rules and impacts

Rules can be extended with other classes
implemented in a separate assembly. The new
rules must implement the IRules interface. If an
extension of the AStates type is needed, it can
be done by inheriting from the class States,
which is the default implementation of AStates.
New impacts can be defined within management
type by implementing the relevant interface (e.g.
IManagementIrrigation), or a new interface
can be defined inheriting from IManagement.
The proper recast will then be done into the
components using the impact defined as shown in
section 4.

3.4 Developments

The goal of on going work is to rationalize
existing rules and to develop rules for different
production activities. A specific interest is given
to rules for pesticides spray, targeting at
incorporating the empirical models frequently
used by extension services to guide pesticides
use.
The software component AgroManagement is
available at http://www.isci.it/tools, inclusive of
sample applications, HTML-style help and code
documentation (NDoc).
.

Fig. 6 Component
diagram of
CRA.AgroManagement.
Rules and impacts can be
extended by making
available other assemblies
with classes implementing
the IRules and
IManagement interfaces.
Management specific
interfaces (e.g.
IManagementTillage)
are implemented in the
impacts assembly.

4. A ModCom APPLICATION

ModCom is a modelling framework that was first
described by Hillyer et al. (2003). Recent
developments, including a C# implementation,
are available online (Anonymous, 2006).
A ModCom simulation models consists of a
number of independent component models. These
component models are recognized because they
implement the ISimObj interface. A component
model becomes part of a composite model when it
is registered with a “simulation environment”
object, which implements functionality defined in
the ISimEnv interface. Component models
communicate with each other via input- and
output ports. Component models indicate to the
ISimEnv instance with which they are registered
what kinds of services they require. Objects that
want to receive periodic notification of the
progress of simulated time, implement the
IUpdateable interface through which they
communicate the interval at which they wish to
receive notification. Objects that implement a
state/rate model implement the IOdeProvider
interface through which an external integrator can
provide numerical integration services to these
objects.
The AgroManagement component needs to
examine its rules every simulated day; this

indicates the need of a component that
implements the IUpdateable interface. Thus,
we created a wrapper class (Gamma, 1994) that
implements ISimObj and IUpdateable and
contains an instance of the AgroManagement
class. This wrapper class is notified every
simulated day by the framework and then calls on
the wrapped instance of the AgroManagement
class to evaluate the rules.
When a management rule fires, the wrapper class
uses the ModCom event mechanism to notify
target objects of the action to be taken. The target
object itself implements the logic that realizes the
action. Specifically, whenever evaluation of the
rules indicates that an action must be initiated, the
wrapper creates an object that implements the
ITimeEvent interface, sets parameters as
appropriate, and registers the event with the
ISimEnv class. The event may be set to be
handled at the current simulation time or at some
future time.
When the simulation time becomes equal to the
time at which the event is set to happen, the event
is sent by the framework to the target object by
invoking the target object’s HandleEvent()
method with the event object as a parameter. The
target object can cast the event object to the
type(s) of event(s) it can handle, obtain the

http://www.isci.it/tools

parameters it needs to implement the action, and
perform the action. The AgroManagement
component is configured by providing it with an
XML fragment that corresponds to the schema in
Fig. 4. The wrapper obtains this fragment by
declaring an input port of type string and passing
the value of this input to the AgroManagement
component during initialization of the simulation.
The ModCom utility mrun.exe is a console
application that takes as its only input an XML
file which contains a description of the simulation
to be run as well as input data for each component
model. This utility reads the configuration for the
AgroManagement component from the xml file
and assigns it to the appropriate input of the
wrapper with the statement:

wrapper.Inputs[“management”].Data.AsS
tring=“<AgroManagement>...</AgroManag
ement>”;

CONCLUSIONS

The rule-impact approach allows specifying any
biophysical driver of the decisional process to
apply management, specifying any agro-technical
input, and using any impact model to implement
the impact of the action. The conceptual
framework defined allows formalizing in a
transparent and extensible way all the concepts
relevant to agro-management, providing instances
for a domain specific ontology. The approach
allows formalizing and making use of expert
knowledge in simulation tools. The independent
implementation via the AgroManagement
component allows de-coupling agro-management
from biophysical models, thus adhering to the
component-oriented design paradigm of
simulation models. A major feature of the
component AgroManagement is the ease to
extend it; rules and impact models can be added
without the need of recompiling the component.

5. ACKNOWLEDGEMENTS

This publication has been partially funded under
the SEAMLESS integrated project, EU 6th
Framework Programme for Research,
Technological Development and Demonstration,
Priority 1.1.6.3. Global Change and Ecosystems
(European Commission, DG Research, contract
no. 010036-2).

6. REFERENCES

Alberts, E.E., Nearing, M.A., Weltz, M.A. Risse,
L.M., Pierson, F.B., Zhang, X.C., Laflen
J.M., Simanton J.R., 1995. WEPP Model User
guide. Chapter 7

Anomymous, 2006. ModCom [Online].
http://www.modcom.wur.nl (verified on
February 6, 2006).

Argent, R.M. and A.E. Rizzoli, Development of
multi-framework model components. In:
Pahl-Wostl C., Schmidt S., Rizzoli A.E.,
Jakeman A.J. (Eds.), Trans. of the 2nd
biennial meeting of the International
Environmental Modelling and Software
Society, Osnabrück, Germany, vol. 1, p. 365-
370, 2004.

Brisson, N., C. Gary, E. Justes, R. Roche, B.
Mary, D. Ripoche, D. Zimmer, J. Sierra, P.
Bertuzzi, P. Burger. 2003. An overview of the
crop model STICS. European Journal of
Agronomy, Vol. 18, No. 3-4, pp 309-332.

CRA-ISCI, 2005 The Model Component Explorer
[online] http://www.isci.it/tools , page XP
Utils (verified on February 6, 2006)

David, O., S.L. Markstrom, K.W. Rojas, L.R.
Ahuja and W. Schneider, The object
modelling system. In: Ahuja L.R., Ma L.,
Howell T.A., (Eds.), Agricultural system
models in field research and technology
transfer. Lewis Publishers, Boca Raton, FL,
USA, p. 317-344, 2002.

Donatelli M., L. Carlini, G. Bellocchi. 2006. A
software component for estimating solar
radiation Environmental Modelling and
Software. Vol. 21, No. 3, pp 411-416

Gamma, E., R. Helm, R. Johnson, J. Vlissides.
1994. Design Patterns: elements of reusable
object-oriented software. Addison-Wesley,
Boston,MA.

Hillyer, C., J. Bolte, F. van Evert, and A.
Lamaker. 2003. The ModCom modular
simulation system. European Journal of
Agronomy Vol. 18, No. 1, pp. 333-343.

Keating, B. A., P. S. Carberry, G. L. Hammer, M.
E. Probert, M. J. Robertson, D. Holzworth, N.
I. Huth, J. N. G. Hargreaves, H. Meinke, Z.
Hochman 2003. An overview of APSIM, a
model designed for farming systems
simulation. European Journal of Agronomy,
Vol. 18, No. 3-4, pp 267-288

Jones, J.W., B.A. Keating and C.H. Porter,
Approaches to modular model development.
Agricultural Systems 70, 421-443, 2001.

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J.
Boote, W. D. Batchelor, L. A. Hunt, P. W.
Wilkens, U. Singh, A. J. Gijsman, J. T.
Ritchie. 2003. The DSSAT cropping system
model. European Journal of Agronomy, Vol.
18, No. 3-4, pp 235-265

Meyer, B. 1997 Object-oriented software
construction, 2nd edition. Prentice Hall,
Upper Saddle River, NJ, USA,.

Stöckle, C. O., M. Donatelli, R. Nelson. 2003.
CropSyst, a cropping systems simulation
model. European Journal of Agronomy, Vol.
18, No. 3-4, pp 289-307.

http://www.modcom.wur.nl/
http://www.isci.it/tools

