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Abstract: Sustainable management of the natural systems is essential in the presence of anthropogenic and
natural disasters. Fisher information based measure and hypothesis have been proposed to quantify the sustain-
ability of natural systems, which are used in this work to formulate management objectives. Since uncertainty
is omnipresent in natural systems, its consideration is important. Real options theory deals extensively with the
representation and forecasting of uncertainty. The options theory, with the Ito mean reverting process, is used
to represent uncertainty, and optimal control theory is used to derive time dependent decisions. The idea is
implemented on a three species predator-prey model. The results highlight the effect of uncertainty on system
dynamics and decisions. When the decisions are viewed as options available to be exercised, the importance of
options theory and control theory in sustainability is evident.
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1. INTRODUCTION

Sustainable development, a multifaceted approach
to manage the environmental, economic, and social
resources, calls for the consideration of long term
effects in all the decisions relevant to the society as
a whole. Sustainable management of natural sys-
tems (e.g. lakes, forests etc.) has assumed impor-
tance due to the harmful effects of anthropogenic
actions (e.g. global warming) as well as natural
disasters (e.g. hurricane Katrina). Being embod-
ied in a multi-disciplinary environment, a suitable
mathematical measure of sustainability is essen-
tial to quantify sustainability and to communicate
successfully amongst various fields. To this ef-
fect, Cabezas and Fath [2002] have proposed Fisher
information based sustainability hypotheses, with
particular focus on natural dynamic ecosystems, al-
lowing the formulation of mathematical objectives
of sustainability. To device the management deci-
sions, natural regulation paths exhibited by ecosys-
tems can be used to advantage. Furthermore, since
the natural systems are constantly evolving, time

dependent decisions to achieve sustainability are
more effective. Optimal control theory, commonly
used in engineering applications, can be applied to
derive such time varying decision profiles. How-
ever, consideration of various uncertainties present
in natural systems is important for a robust analysis
of this problem. The representation of uncertainty
is as important as its treatment. Real options theory
used in finance extensively deals with uncertain-
ties and proposes various methods to forecast and
represent the uncertainties. The effect of these un-
certainties on the decisions is important and must
be well understood.

This work uses real options theory concepts for
uncertainty representation and derives time depen-
dent decisions using optimal control theory in the
presence of these uncertainties to achieve FI based
sustainability objectives. The application is illus-
trated using a three species predator-prey model.
The next section describes the theoretical basics
of this work. Section 3 presents the results for
the predator-prey model, while section 4 discusses
these results from options theory perspective. The



article ends with conclusions in section 5.

2. BACKGROUND THEORY

2.1 FI AS SUSTAINABILITY MATRIX

Cabezas and Fath [2002] have proposed to use
Fisher information (FI) [Fisher, 1922] from infor-
mation theory to derive a measure for the sustain-
ability of a system, and propose the sustainability
hypothesis for natural systems. One of the inter-
pretations of FI, relevant for the natural systems, is
as a measure of the state of order or organization
of a system or phenomenon [Frieden, 1998]. Here,
organization refers to the distribution of the states
in which the system exists. The central argument
in the sustainability hypothesis is that the stability
(static or dynamic) of a system is sufficient (but
not necessary) for the sustainability of the state of
the system. Fisher information, being an indicator
of the system stability, is also an indicator of the
sustainability of the state of the system. The sus-
tainability hypothesis accordingly states that: the
time-averaged Fisher information of a system in a
persistent regime does not change with time. Any
change in the regime will manifest itself through a
corresponding change in Fisher information value
[Cabezas and Fath, 2002]. The corollaries to this
hypothesis state that increase in the FI of a system
ensures that the system is maintaining its state of
organization, and they give an idea about the quality
of change, if the system is changing its state.

Based on the sustainability hypotheses, from an
ecosystem management perspective, two differ-
ent objectives are formulated: minimization of the
Fisher information variance over time, and maxi-
mization of time averaged Fisher information.

2.2 ECOSYSTEM REPRESENTATION : FOOD

CHAIN M ODEL

The natural system considered for this study is
represented by a food chain model. It is a
three species predator-prey model (Rosenzweing-
MacArthur model) which has been extensively used
in theoretical ecology [Abrams and Roth, 1994;
Gragnani et al., 1998]. The model is given by the
following set of differential equations:
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where, x1 (prey), x2 (predator) andx3 (super-
predator) are the population variables of three dif-
ferent species in the food chain, in the ascending
order of the position in the chain.r andK are the
prey growth rate and the prey carrying capacity,
respectively, andai, bi, ei anddi, i = 2, 3, are the
maximum predation rate, half saturation constant,
efficiency, and death rate of the predator (i = 2)
and the super-predator (i = 3).

There are various possible sources of uncertainty in
this model. In this work, the mortality rate of the
predator (d2) is considered to be uncertain. Since
the predator mortality rate is expected to show time
dependent variations, such as seasonal variations
in mortality, it is modelled as a stochastic process.
Real options theory is used to achieve the task of
uncertainty representation, which is explained in
the next section.

2.3 UNCERTAINTY REPRESENTATION : REAL

OPTIONS THEORY

Most investment decisions share three important
characteristics in varying degrees. First, the invest-
ment is partially or completely “irreversible”. In
other words, the initial cost of investment is at least
partially “sunk”; you cannot recover it all should
you change your mind. Second, there is “uncer-
tainty” over the future rewards from the investment.
The best you can do is to assess the probabilities
of the alternative outcomes that can mean greater
or smaller profit (or loss) for your venture. Third,
you have some leeway on the “timing” of your
investment. You can postpone action to get more
information but not with complete certainty. These
three characteristics interact to determine the op-
timal decisions or “options” for investors. A firm
with an opportunity is holding an “option” to buy
an asset at some future time of its choosing. When a
firm makes an irreversible expenditure, it exercises,
or “kills”, its option to invest. This lost option value
is an opportunity cost that must be included as part
of the cost of investment. Opportunity cost is highly
sensitive to the uncertainty over the future value of
the project. In an analogous fashion irreversibility,
uncertainty, and timing issues are also important for
sustainability [Diwekar, 2003; Dixit and Pindyck,
1994]. Forecasting in the context of sustainability
is similar to financial decision making [Diwekar,
2005].



Real options theory presents different ways to rep-
resent and forecast uncertainty using the stochastic
processes. Wiener process, also known as Brownian
motion, is a simple continuous time and continuous
state stochastic process. It can be used to model
a variety of continuous stochastic processes [Dixit
and Pindyck, 1994; Diwekar, 2003]. The Wiener
process is represented as:

dz = εt

√
dt (4)

where, dz is the random variable, andεt is a
normally distributed random variable, with zero
mean and unit standard deviation. Random vari-
abledz has the property that the expectation is zero
(E[dz] = 0) and the variance isdt (var[dz] = dt).
Using this definition of the Wiener process, the gen-
eral form of the Ito process is given as:

dx = a(x, t) dt + b(x, t) dz (5)

Here, x(t) is the continuous time stochastic vari-
able that is to be modelled, anddz is the Wiener
increment, as defined by Eq. (4).a(x, t) (drift pa-
rameter) andb(x, t) (variance parameter) are known
(nonrandom) functions. Many stochastic processes,
such as the simple Brownian motion with drift, the
geometric Brownian motion and the mean reverting
Ito process are derived from Eq. (5). In this work,
the mean reverting Ito process is used to model the
predator mortality rate (d2). The characteristic of
the mean reverting Ito process is that, although it
models the random variable fluctuations for a short
time, in the long run, the variable is drawn back to
the mean value. The mean reverting process has
been used to model many stochastic variables, such
as crude oil and copper prices [Dixit and Pindyck,
1994], relative volatility of non-ideal mixtures [Ulas
and Diwekar, 2004] and also the human mortality
rate [Diwekar, 2005]. The equation for the mortal-
ity rate as a mean reverting process is given as:

dx4

dt
= η(x̄4 − x4) +

σ ε√
∆t

x4 (6)

Here,x4 represents the stochastic predator mortal-
ity rate, η is the speed of reversion,σ is the con-
stant variance parameter, andx̄4 is the mean mor-
tality rate to whichx4 tends to revert. The expected
change inx4 depends on the difference between
x4 and x̄4. One instance of the predator mortality
represented as an Ito process is shown in figure 1
(x̄4 = 1). Eq. (6), along with Eqs. (1)-(3), repre-
sent the stochastic tri-trophic food chain model.
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Figure 1. Predator mortality as an Ito process.

2.4 CONTROL PROBLEM FORMULATION

The food chain model described the preceding sec-
tion is used to compare various control philosophies
proposed in the literature to manipulate the food
chain. This includes top-down control (control
by manipulating the super-predator mortality) and
bottom-up control (control by manipulating the prey
carrying capacity). The task is to devise the time
dependent profiles of the decision variables, for
which optimal control theory is used in this work.

In general, control refers to a closed loop sys-
tem, where the desired operating point is compared
with an actual operating point and a knowledge
of difference is fed back to the system. Conven-
tional frequency domain techniques are then used
to design a controller. Optimal control problems
on the other hand are defined in time domain, and
their solution requires establishing an index of per-
formance for the system and designing the course
(future) of action so as to optimize the performance
index [Diwekar, 1996].

For the deterministic case, Pontryagin’s maximum
principle can be used to formulate the optimal
control problem. For the stochastic case though,
methods based on the Ito’s lemma need to be used.
In this work, the recently proposed stochastic max-
imum principle is used [Rico-Ramirez et al., 2003;
Rico-Ramirez and Diwekar, 2004]. The main ad-
vantage of using this approach is that the solution
to the partial differential equations in dynamic pro-
gramming formulation is avoided. Instead, a set of
ordinary differential equations needs to be solved
as a boundary value problem. The problem formu-



lation is briefly explained below:

Consider a system represented by the following
set of differential equations.

dx = f(x, u, t) dt + g dz (7)

where,x is the state variable vector of dimensionn
(x(t) ∈ Rn), andu is the control variable vector of
dimensionm (u(t) ∈ Rm). The starting condition
for the state vector is given byx(t0) = x0, and the
final condition at timeT is x(T ). Let 1, ..., nk be
the set of deterministic states, andnk+1, ..., n be the
set of uncertain states. The second part of Eq. (7)
models the uncertainty. For deterministic states, the
functiong = 0. In optimal control, there is a time
dependent performance index, which, in this case,
is represented as:

J(t0) =
∫ T

t0

F (x(t), u(t), t)dt (8)

where,F is the function to be optimized over the
time interval of [t0, T ]. The Hamiltonian for this
stochastic case is defined as:

H(x, u, t) = F (x, u, t) + λ′ f(x, u, t) +
1
2

g2 w(9)

where,λ(t) is the set of costate or adjoint variables
(λ(t) ∈ Rn) (the first derivatives of the objective
function F with respect to state variables), andλ′

represents the matrix transpose.ω(t) represent the
second derivatives of the objective functionF with
respect to the state variables. This term is included
due to the Ito process contribution. The optimal
control law is then given by the solution of the fol-
lowing set of equations:

State Equation

ẋi =
∂H

∂λi
= f i = 1, ..., n (10)

Costate Equation
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dwj

dt
= −2 wj

∂

∂xj
fj − 1

2
wj

∂2

∂x2
j

(g2
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Stationarity Condition

0 =
∂H

∂up
=

∂F

∂up
+

∂f ′

∂up
λ p = 1, ...,m (13)

This is a set of2n + (n − nk) ordinary differ-
ential equations (state and costate equations) andm
algebraic equations (stationarity condition), and it is
solved as a boundary value problem. The boundary
values of the state and costate variables depend on
the problem specification, while the boundary val-
ues forw are given asw(T ) = 0 [Rico-Ramirez and
Diwekar, 2004]. The control trajectory obtained is
optimal for the considered objective function and
starting conditions.

Due to the complex set of algebraic and ordinary
differential equations, analytic solution to the prob-
lem is not possible. Hence, numerical technique
of steepest ascent of Hamiltonian is used. The
next section discusses the important aspects of the
results.

3. RESULTS
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Figure 2. Predator mortality as an Ito process.

The presented problem was solved for various cases
where human intervention to maintain sustainabil-
ity is essential [Shastri and Diwekar, 2006a]. The
results indicate that using bottom-up control with
FI variance minimization objective ensures system
stability and achieves the desired population dy-
namics in most cases. FI maximization objective
causes more severe changes in the dynamics. A
quantitative comparison with the results for the de-
terministic cases (reported in Shastri and Diwekar
[2006b]) indicates that uncertainty impacts the rel-
ative extent of success or failure of a management
option. It is also found that not only the presence
of uncertainty, but also the degree of uncertainty, is
important to rank various management options.



It is equally important to understand the impact
of uncertainty on the decisions. For the stochastic
systems, the control profiles are derived by repre-
senting the uncertain parameter using an Ito process
and then using the stochastic maximum principle
from the optimal control theory. By ignoring un-
certainty, deterministic methods to derive control
profile can be used. However, such an approach
should lead to sub-optimal results since the effect of
uncertainty on control variable is ignored. This is
ascertained by conducting the following simulation
study.

The response of the stochastic tri-trophic food chain
model exhibiting super-predator extinction, when
controlled by prey carrying capacity (bottom-up
control) using FI maximization objective is plotted.
The following two cases are considered:

• Stochastic system controlled by control vari-
able profile generated using stochastic opti-
mal control theory (stochastic maximum prin-
ciple) as explained in this work

• Stochastic system controlled by control vari-
able profile generated by using deterministic
control theory i.e. not considering uncertainty
to derive control profile

The plots for the super-predator population are
shown in figure 2. They indicate that super-predator
population is elevated much more using the con-
trol profile generated by stochastic optimal control
theory. Although, using the control profile gen-
erated by the deterministic optimal control theory
also restricts super-predator extinction, its perfor-
mance is clearly inferior to the stochastic control
variable profile. One can, therefore, conclude that
the stochastic control gives a better result as com-
pared to the deterministic control. This trend is ob-
served, to a greater or lesser extent, for other cases
too, highlighting the importance of uncertainty in-
corporation in control problem solution. Figure 3
compares the control variable profiles for the deter-
ministic and stochastic cases. It can be seen that the
two control profiles differ, particularly during the
initial half of the simulation. The profile generated
by stochastic maximum principle is not only better
due to the resulting dynamics, but also because its
magnitude of fluctuations is less than that for the
deterministic control. This emphasizes that the ef-
fects of uncertainty on the decisions are important
and significant.

4. DISCUSSION

In real options theory, an option exists when the
firm has the right but not the obligation to take
action. Thus, not only the decisions, but also the
timing of the decisions is optimized. As explained
in section 2.3, realization of uncertainty can affect
decisions and hence options theory allows one to
take decisions in the presence of forecasting of
these uncertainties.

The results for the stochastic food chain model
presented in the previous section can be viewed
from this perspective. When the stochastic model
was controlled by a control profile derived for a
deterministic system, realizations of the uncertain
mortality rate were ignored. On the contrary, using
the Ito process representation and stochastic maxi-
mum principle, the decisions were optimized in the
presence of forecast, thereby accounting for the re-
alizations of the uncertain parameter. The decision
variable (prey carrying capacity) can be thought of
as an option available to maximize the considered
benefits. With the stochastic control, these options
were optimally utilized by changing the magnitude
and timing of the decisions. The decisions will have
certain cost associated with them. For example,
the bottom-up control in aquatic systems is usually
affected by the addition of nutrients in the water
body, and will incur certain cost to the regulatory
agency. Optimization considering uncertainty fore-
cast ensures that the best use of these resources
is made, consequently minimizing the cost of the
implementation to achieve the objectives. If the
optimization of the cost of these decisions is also
an objective, then the proposed way of deriving the
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Figure 3. Predator mortality as an Ito process.



control profiles is a better alternative in the light of
the options theory.

The uncertainty representation used here is based
on finance literature, where uncertainty realizations
and their probabilities are known. However, this
may not be true for natural systems, where unex-
pected outcomes with unknown probabilities are
possible, leading to unknown values of the deci-
sions taken at the present time. Arrow and Fisher
[1974] argue that these unknown values create
a quasi-option for the decisions. Conrad [1980]
showed that quasi-option value is equivalent to the
expected value of information, while option value is
equivalent to the expected value of perfect informa-
tion. In this context, incorporation of quasi-options
concepts in future will broaden the scope of this
work, particularly for the natural systems. Further-
more, work in finance literature is mostly restricted
to linear cases. Here however, the use of stochastic
optimal control theory, based on rigorous mathe-
matical concepts, allows one to extend the ideas to
natural systems which are often nonlinear in nature.

5. CONCLUSION

Achieving sustainable natural systems through
management level decisions is the goal behind the
presented work. Since natural systems exhibit many
sources of uncertainty, its incorporation in decision
making is essential, where appropriate representa-
tion of uncertainty is very important. Real options
theory deals with the aspects of uncertainty fore-
casting. In this work, the Ito mean reverting process
is used to represent the uncertainty in the food chain
model considered for this analysis. Optimal control
theory is used to derive the time dependent control
profiles. The results indicate that the uncertainties
affect not only the resulting system dynamics, but
also the decisions considerably. In this wake, the
decisions can be viewed as the options with the de-
cision makers, and using the proposed method, the
decisions are optimized, analogous to the options
theory.
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