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Abstract: In aquatic ecosystems, species diversity is known to be higher in poor nutrient conditions. The 
enrichment of nutrition often induces the loss of biodiversity. This phenomenon is called the paradox of 
enrichment, since higher nutrient levels can support more species. Furthermore, the species diversity is 
usually high in most natural communities of phytoplankton. However, the niches of planktonic algae seem 
almost identical in apparently homogeneous, aquatic environments. Therefore, the high species diversity of 
phytoplankton is incomprehensible and called the paradox of plankton. Mathematical studies show that local 
coexistence of competitive species is rare. In a competitive community, the most superior species eliminates 
all the inferior species in the long run. Experimental results using chemostats also support this theoretical 
prediction. Thus we have no sound explanation for the local coexistence of many planktonic species in low 
nutrient conditions. Here we build a lattice model of ten planktonic species. All ten species are under 
competition for space in a relatively large lattice space. We report a few cases of simulation run. Simulation 
shows that, in an ecological time scale, coexistence of many species is observed when all species have low 
identical birth rates. We also show that, when the average birth rates are high, the most superior species 
exclude all the inferior species immediately. Our results suggest that competition for space does not function 
among species, when the densities of species are extremely low.  The results of current simulation 
experiments may be related to the paradox of enrichment as well as that of plankton.  
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1. INTRODUCTION 

Enrichment is empirically known to reduce the level 
of species diversity of animal and plant 
communities. However, a community should be 
able to support more species with enrichment 
because of increased productivity. Therefore, the 
loss of biodiversity with enrichment is 
counterintuitive and called the paradox of 
enrichment [Rosenzweig, 1975, 1995, Tilman, 
1982]. Here we limit our argument in the aquatic 
ecosystems.  

In the aquatic systems, the loss of biodiversity is 
often correlated with enrichment of water 
conditions [Ogawa and Ichimura, 1984a, 1984b, 
Ogawa, 1988]. High biodiversity is observed in still 
waters with low nutrients. Recent pollution due to 
domestic and factory wastewaters increases the 
nutrient levels of almost all aquatic systems, 
invoking the serious enrichment problem.  

The nutrient concentrations are low in most well-
preserved aquatic ecosystems. The species 
diversities of phytoplankton are usually high in 
these ecosystems. Because water environment is 
homogeneous and the niches of phytoplankton are 
almost identical, the most superior species should 
exclude all the rest of inferior species. However, it 
seems that many species of phytoplankton usually 
coexist in a single natural aquatic ecosystem 
without apparent competitive exclusions. This 
unexplainable phenomenon is called the paradox of 
plankton after Hutchinson [1961].  

In contrast with the observed high diversity in 
natural aquatic ecosystems, theoretical studies 
predict that local coexistence of species is highly 
limited. Many mathematical analyses and 
simulations show that local coexistence of 
competitive species is usually impossible unless 
interspecific competition is weaker than  
intraspecific competition. Simulation experiments 



 

usually show that the outcomes are the dominance 
of a single species resulting in the exclusion of all 
the rest (inferior) species.  

To explain the extreme diversity in some 
communities, external factors are suggested, such as 
climatic changes, immigration from other habitats. 
Many mathematical models and theories try to 
achieve coexistence of many species by means of 
external factors, such as environmental changes 
(stochasticity), immigration of adjacent individuals. 
However, such external factors do not necessarily 
seem to be applicable to the diversity of plankton.  
Many empirical studies of small pond and lake 
ecosystems with low nutrient still waters show high 
species diversity. There seems no indication of 
external factors in these ecosystems in general. 

Thus we have three-fold mysteries in the planktonic 
communities with low nutrient conditions: (1) 
paradox of enrichment, (2) paradox of plankton and 
(3) competitive exclusion of species with identical 
niches.  

In this paper, we built a simulation model of ten 
planktonic species in a large lattice habitat. We   
assumed that the competition between planktonic   
species (or individuals) is achieved through the 
growth difference of species. We carried out quite a 
few simulation runs with various birth rates, 
keeping the constant death rate. We show a typical 
dynamics of low and high nutrition conditions. In 
low nutrient conditions, we show that many species 
persist and coexist in ecological time. In high 
nutrient conditions, we show the case of instant 
elimination of all the inferior species by the most 
superior species. We discuss the implication of the 
current simulation trials in relation to the paradoxes 
of enrichment and plankton. 

2. LATTICE MODEL OF MULTIPLE 
COMPETITIVE SPECIES 

2. 1 Lattice Model 

We consider a competitive ecosystem of ten 
planktonic species (Si; i = 1,.., 10) on a large square 
lattice (500×500 cells).  Birth and death processes 
are given by  
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where each lattice site is either occupied by species 
Si (Xi) or empty (O). The reactions (1), (2) and (3) 
simulate reproduction (birth), death, and dispersal 
(movement), respectively. The parameters bi and mi 

represent the birth and death rates of an individual, 
respectively. All parameters are kept constant 
during a simulation run. The death rate mi is kept at 
mi = 0.3 for all simulations. The parameter di 
represents the accidental dispersal (movement) rate 
of an individual, where an individual move to one 
cell to another, randomly.   The dispersal is 
implemented to prevent clumping or extreme 
aggregation, simulating an aquatic system. The 
reaction is carried out in two ways:  the contact 
process (CP) where interaction occurs between 
adjoining lattices [Harris, 1974] and the mean-field 
simulation (MFS) where interaction globally occurs 
between any pair of lattices.   

We study two distinct growth conditions assuming 
low and high productivities. In the high productivity, 
we assume that all species have species-specific 
birth rates, while in the low productivity, all species 
have the identical low birth rate due to the critical 
threshold for growth rates. We set bi = 0.5 (i = 
1,..,10) for the low productivity. At this birth rate, 
the net growth (reproductive) rate is positive, but 
very close to zero. For the high productivity, we set 
bi = 1.01 - 0.01i  (i = 1,..,10). Here max bi = b1 = 
1.00, and min bi = b10 = 0.91.  

 

2.2 Simulation Procedure 
 
The simulation procedures for the contact process 
(CP) are as follows: 

(I) Algal cells are distributed randomly over some 
square-lattice points in such a way that each point is 
occupied by only one individual cell, if the point is 
occupied. The initial density of Xi is set to 0.0001 
for all simulations.  

(II) Each reaction process is performed in the 
following three steps. 

 (i) We perform the single body reaction (2). 
Choose one square-lattice point randomly. Let 
change the point to O with probability mi, if it is 
occupied by a Xi individual. 

 (ii) Next, we perform the two-body reaction (1). 
Select one point randomly and specify one of 
adjacent points. Here the adjacent site is set as the 
Neumann neighbors (4 sites: up, down, left and 
right). If the selected pair is Xi and O, then the latter 
point will become Xi with probability bi.  Here we 
employ periodic boundary conditions. 

(iii) At last, we perform the two-body reaction (3). 
Select one point randomly. If the selected point is Xi, 
then we choose another point randomly. If the 
second point is not occupied (O), then we move Xi 
to the second site (interchange Xi and O).    



 

 

 

 

Figure 1. A typical result of population dynamics for the lattice ecosystem of ten competitive species Si (i = 
1,..,10). A: the contact process. An identical low birth rate bi = 0.5 is assumed for all species, implying a poor 
nutrient condition. At this birth rate, the net growth (reproductive) rate is positive, but very close to zero. B: 
the contact process.  High different birth rates are assumed for ten species, such that bi = 1.01 - 0.01i  (i = 

1,..,10). Here max bi = b1 = 1.00, and min bi = b10 = 0.91. C: the mean-field simulation (MFS) for A. D: the 
mean-field simulation (MFS) for B. The death rate mi = 0.3 and the dispersal rate di = 0.01. The time is 

measured by the Monte Carlo step. The total number of square-lattice sites is 500 × 500. 

 

 



 

 

Figure 2.  Temporal dynamics  of ten competitive species in the spatial ecosystems in ecological time with an 
identical low birth rate bi = 0.5. Top: the contact process model (exerted from Fig. 1A). Bottom: the mean-
field simulation (MFS). The density of each species (left cells) and the remaining number of species (right 

cells) is plotted against time evolution. Up to 20,000 Monte Carlo steps are shown.  

 

(III) Repeat the step (II) by L × L times, where L × 
L is the total number of the square-lattice sites.  
Here we set L = 500. This step is called a Monte 
Carlo step [Tainaka, 1988] 

 (IV) Repeat the step (III) for a specific length, that 
is 100,000 Monte Carlo steps. 

In the case of mean-field simulation (MFS), the 
above procedure is slightly different. In the contact 
process, the interaction (1) occurs between adjacent 
lattice sites. However, in the MFS, the long-ranged 
(global) interaction is allowed: the reaction (1) 
takes place between any pair of lattice sites. The 
second sentence in Step (ii) is changed as follows: 

(ii’) … Two lattice sites are randomly and 
independently selected.  

Note also that the reaction (3) has no meaning 
(effect) on the dynamics in the MFS. 

 

3.     RESULTS   

We run a long-term simulation for various birth rate 
conditions, while keeping the death rate constant at 
mi = 0.3. A typical example of long-term dynamics 
is shown in Fig. 1 for both low and high birth rates.  

There is a threshold value for birth rates to achieve 
positive or net reproductive rates, resulting in zero 
net growth where the birth and death rates are 
balanced. When the birth rates are slightly lower 
than this threshold value (for example, bi = 0.49), 
all species go extinct quite rapidly. In an ecological 
time scale of about 10,000 time steps (Monte Carlo 



 

 

Figure 3.  Snapshots of a temporal pattern in the 
lattice model (CP) of Fig. 1 at a time point 
(top: 20,000, bottom: 40,001). The birth rate bi 
= 0.5. The density of Si are listed above. The 
100x100 sites are cut from 500x500 sites. 

 

steps, almost all species still coexist in the 
ecosystem, when the birth rate is positive, but close 
to zero growth rates (bi = 0.50; Fig. 1A). In much 
longer time scales, most species are eliminated by 
chance, as a random walk. 

In contrast, when the birth rates are significantly 
higher, all inferior species are immediately 
excluded by the most superior species in a very 
short time much shorter than 5,000 time steps (Fig. 
1B). When the birth rates are high and different 
among species, only one dominant species with the 
highest growth rate eliminate all the rest species 
immediately in almost any simulation. This happens 
irrespective of the simulation methods (either 
contact process models or mean-field simulations).   

Fig. 2 shows the results of the contact process and 
the mean field simulation in which the birth rate is 
close to zero growth rate value.  Note that the 
dynamics of up to 20,000 time steps is long enough 
to cover ecological time scales. In both the contact 
process and the mean-field simulation, the 
coexistence of most species is maintained in these 
time steps (Fig. 2). Between the two simulations, 
there are only slight differences in the average 
density and extinction dynamics. In the contact 
process, the average density is slightly higher (Fig. 
2, top-left) than that of the mean-field simulation 
(Fig. 2, bottom-left). The remaining number of 
species is also higher in the contact process (Fig. 2, 
top-right) in contrast with that in the mean-field 
simulation (Fig. 2, bottom-right).  

These slight differences should be due to the spatial 
structure of lattice model in the reaction (e.g. step 
(II)). Fig. 3 shows the temporal pattern dynamics of 
Fig. 1 at a time point of 20,000 and 40,001 time 
steps.  Fig. 3 clearly shows clumping tendency. It 
indicates the effects of lattice spatial structure on 
the coexistence trends in Fig. 2.  

We also tested various conditions in birth rates. For 
example, we run the simulation with low variable 
birth rates (bi = 0.49 + 0.01i). In the low density, 
the effects of the 0.01 differences in birth rate on 
the dynamics are extraordinary. All the inferior 
species are instantly eliminated from the ecosystem. 
The elimination rate is a few times faster than that 
in the high birth rates.  The implication of 
variability (differences) in low and high birth rates 
will be discussed in detail later in the discussion. 

 

4.  DISCUSSION 

In the current simulations, we vary birth rates of ten 
species to see the persistence and coexistence of 
species in ecological time scales. When the birth 
rates of ten species are identical, most species 
coexist. However, a slight difference are introduced, 
the species with the highest growth rate eliminate all 
other species. In natural ecosystems of poor nutrient 
conditions, growth rates are closely zero and 
virtually no species variability in growth rate is 
expected [see e.g., Tilman, 1982]. Thus the 
coexistence in ecological time scale in our 
simulation is understandable in nutrient-limited 
aquatic systems. In contrast, in nutrient-rich 
conditions, the species-specific growth rates should 
be extremely variable [Kuwata and Miyazaki, 2000]. 
Thus, the elimination of all the inferior species 
should take place due to the competitive interaction 
between species.  



 

The lattice size (500 × 500) in our simulation is 
larger than usual lattice models, but it is still 
extremely small in comparison with the real sizes of 
natural aquatic ecosystems. The total densities of 
plankton in natural ecosystems are lower in several 
magnitudes than those in our low-density simulation. 
Due to the computational limitation of lattice size 
(500×500), it is impossible to get the stable steady 
state with lower birth rates (closer to the threshold 
value. The general trends we observed in the lattice 
simulation could be much more significant in the 
natural ecosystems.  

Our simulation shows that the local coexistence of 
phytoplanktonic species in ecological time may be 
achieved by the internal factors alone. The 
coexistence in the ecosystem is virtually not 
coexistence at the same site in the lattice; rather 
almost all individual planktonic species survive and 
reproduce independently from other species due to 
the vast space between them. Low nutrient 
conditions of natural ecosystems may prohibit the 
reproduction to reach the high density that incurred 
competitive interaction.  

Even though the current simulations are limited and 
only trial runs with limited combinations of 
parameters are carried out, these results indicate 
that local coexistence of many species in very low 
birth rates is possible, while the instant elimination 
of all inferior species by a single dominant species 
is also possible. Thus the mechanisms underlining 
the current lattice model may relate to the paradox 
of enrichment, as well as that of plankton. 
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